In the
The increase in the amount of CO2 in the atmosphere, which is the cause of climate warming, is the result of human activity (use of fossil fuels and deforestation). However, warming is mitigated by the oceans and by terrestrial ecosystems, which are able to absorb a large part of CO2 emissions. The oceans are the planet's main carbon sink, but in the last ten years they have become increasingly unable to play this role, in both the northern and southern hemispheres.
This is what has been discovered by Nicolas Metzl and his team at IPSL's LOCEAN laboratory. Their conclusion is based on data collected by the OISO Indian Ocean observation service, which was set up ten years ago with the backing of INSU, CNRS, IPEV and IPSL in order to better evaluate variations in the oceanic carbon cycle on seasonal to decadal scales. From 1998 to 2008, the OISO observatory carried out repeated campaigns of CO2 measurements in the
According to Metzl, who is leader of the OISO program, this increase is the result of climate change at high latitudes, which has led to an increase in the relative difference of atmospheric pressure at latitudes between 40 and 60°S, and therefore to higher wind speeds, leading in turn to increased ocean mixing, with surface waters mixing with deep waters. Surface waters contain less CO2 than deep waters, since CO2 is taken up by the photosynthetic activity of marine phytoplankton. In addition, when these organisms die, they are deposited in deep water where they are broken down by bacteria, thus enriching the deep water in CO2. Thus when there is increased wind mixing of the ocean, greater amounts of CO2 are carried from the deep layers to the surface and, as a result, the ocean's ability to absorb atmospheric CO2 is diminished.. This is the first time that field measurements have confirmed the role of climate change in the oceanic carbon cycle in the southern hemisphere.
Both in the northern and southern hemispheres, the last ten years have seen a weakening of oceanic carbon sinks, which means an increase in atmospheric CO2 content and thus in climate warming. Just how far can this go, and what will the consequences be for the future climate? To find out, researchers will need to continue these observations and take into account these new results to validate models, especially the coupled climate/carbon models that include marine biology, like those used in the reports of the IPCC.
This is because the models currently used for climate prediction do not correctly simulate the changes in oceanic CO2 observed over the last two decades at high northern and southern latitudes.